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ABSTRACT

High power MMIC amplifiers reguire large
periphery output devices in order to meet their
output power goals. Bandwidth and impedance
matching considerations typically require that
this large output device be subdivided into
smaller devices and power combined on-chip.

This power combining introduces n possible modes
of oscillation when n devices are combined. The
usual K,Bl-factor stability analysis only ad-
dresses one mode (the even mode). This paper
presents an analytical approach for predicting
and stabilizing oscillations for all n modes.
Specific cases for n=2 and 4 are discussed, The
approach can be implemented using standard small
signal analysis software.

INTRODUCTION

High power MMIC amplifiers require large
periphery output devices in order to achieve
their power output goals. A 3 watt power MMIC
employing FETs, for example, requires approxi-
mately 8 mm of output stage periphery in order
to operate at maximum power-added efficiency
while overcoming output circuit losses [1].
Bandwidth and impedance matching considerations
typically require that this large output device
be subdivided into smaller devices and power
combined on-chip. This subdivision may or may
not involve physical separation of the devices
[2,3). Unfortunately, the introduction of
on-chip power combining also introduces the
possibility of additional modes of oscillation
[4). In general, n orthogonal voltage/current
modes, 1 "even" and n-1 "odd", can exist when n
devices are combined. The usual amplifier sta-
bility analysis involving the K/Bl1l factors ad-
dresses only the even mode. The amplifier can
still oscillate in any of the other odd modes
even though it has been stabilized in the clas~
sical sense (i.e., K>1, Bl+).

This paper develops the mathematical frame-~
work and techniques for predicting possible
oscillations for all n modes in order to ensure
MMIC stability. Although the analysis is appli~
cable to any number of combined devices, only
the cases for n=2 and ¢ will be discussed here.
As will be shown, these two cases illustrate the
special considerations that apply for small
numbers of combined devices (n=2) and the diffi-
culties in analyzing larger numbers of combined
devices (n=4).

GENERAL ANALYSIS APPROACH

N=2
The general mathematical technique for pre-
dicting mode stability will be developed using

the special case of two combined devices (n=2).
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The network topologies which will be analyzed
are shown in Figure 1.
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Figure 1. Circuit topologies analyzed in this paper. The divi-

sion of the cirecuits into input and output halves for analysis is

shown. (a) Two combined devices (n=2). (b) Four combined devices
(n=4, corporate comkiner).

Although the nonlinear operation of power
devices can create various types of instabili-
ties [5), the oscillations analyzed in this
paper start from small signal levels and build
up until device saturation limits are reached.
Small signal parameters (s-,z-,y-, etc.) can
therefore be used to predict stability. As will
be clear later, z-parameters are the appropriate
choice for this type of analysis [6]. There-
fore, congider the two-port z-parameters of each
half of the amplifier shown in Figure 1l(a).

Note that the "input” of the input half of the
amplifier is terminated in the source resistance
Ry and the "output" of the output half of the
amplifier is terminated in the load resistance
R,. Ports 1 and 2 of the input half are at the
device output terminals. Likewise, ports 1 and
2 of the output half are at the combiner termi-
nals. The form of the z-parameter equation for
each half is

lzy 2 1T 3
: = (1)
Zp Zy| Iy iV,
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i.e, the z-matrix is symmetrical with z,=z, and
Z,=2,,. The eigenvalues and eigenvectors of the
z-matrix are the scalars, z, and current vectors
|I| that are solutions of

(2)

For the z-matrix in (1), the two
eigenvectors and associated eigenvalues are
given by

i
B

These two eigenvectors are linearly indepen-
dent or orthogonal and represent the two cur-
rent/voltage modes, one even and one odd, which
can exist in each half of the amplifier. A
general current/voltage waveform at the device
or output combiner terminals would consist of a
linear combination (at small signal levels) of
these two fundamental modes. Note that the even
mode represents "normal" circuit operation where
the currents and voltages at each port are
in-phase whereas the odd mode represents circuit
operation in which the port currents and voltag-
es are 180° out- of-phase. For n=2, therefore,
the odd mode is also known as the "push-pull"
mode. The associated eigenvalues for each mode
are the impedances seen at each port when excit-

] 2.=2,+2, "even" mode

(3}

] Z, =2y~ 2y "odd" mode

ed by each mode, i.e.,
z, = impedance seen at each port under
even mode excitation,
zZ, = impedance seen at each port under

odd mode excitation.

These interpretations are possible because
of the choice of z-parameters to characterize
the two amplifier halves. Each half of the
amplifier has the same two meodes (eigenvectors)
but, in general, the values for the associated
eigenvalues are quite different. Now, let the
second subscript i denote the input half of the
amplifier and the second subscript o denote the
output half. Then, using the well-known condi-
tions for negative resistance oscillations, the
stability conditions for each mode can be stated
as

Re{ z,+z } < 0 and
In{ z;tz.,} = 0 (even mode)
(4)
Re{ z,tz,} < 0 and
In{ z,t2,} = 0 (odd mode).

If these conditions are met for a mode at
some frequency, f,, then oscillations will occur
in that mode at f£,.

Verification of Equations Using SPICE (N=2)

The stability equations in (4) were verified
by analyzing the sample amplifier network shown
in Figure 2. The amplifier was stabilized for
even mode operation using the resistors in the
input circuit. Subsequent analysis verified
that the K~factor was greater than 1 and the
Bl-factor was positive at all frequencies. With
R set to ® initially, the odd mode eigenvalues
for each half of the amplifier, eg. (3), and the
eigenvalue sum, eq. (4), were computed vs. fre-
quency using the OUTVAR and OUTEQN blocks in
TOUCHSTONE. The same amplifier network was also
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Figure 2. Amplifier network used to verify odd mode stability

equations for n=2 case. The K-factor is greater than 1 and the
B1-factor is positive for all frequencies indicating
unconditional even mode stability.

analyzed using MICROWAVE SPICE in order to veri-
fy any predicted oscillations. A Curtice cubic
model of a Westinghouse ion-implanted FET was
used in the SPICE analysis. In order to keep
the two analyses consistent, small-signal
s—-parameters at the desired bias point were
generated for the FET using SPICE and inserted
into the TOUCHSTONE analysis.

Figure 3(a) shows the odd mode eigenvalue
sum generated by TOUCHSTONE. At 5 GHz, a net
negative real part (negative resistance) was
computed with a net reactance equal to zero.
The oscillation condition of eq. (4) was there-
fore satisfied. Figure 3(b) shows the corre-
sponding SPICE analysis where the instantaneous
drain voltages of the two FETs are plotted vs.
time. As can be seen, push-pull oscillations
are indeed occurring at 5 GHz.

The same analysis can be used to stabilize
the amplifier in the odd mode. Although several
resigtive stabilization schemes are possible
{4), only the approach shown in Figures 1 and 2
will be analyzed here. This approach consisgts
of straddling a resistor (R.u) between the
drains of the two FETg. 0Odd mode current, being
180° out-of-phase between the two FETs, must
flow through this resistor. A suitable choice
for the value of this resistor will dampen out
the oscillations. Figure 4(a) plots the odd
mode eigenvalue sum for the amplifier with
R,,=400 ohms. Note that now the sum of the real
parts is » O so that oscillations are impossi-
ble. A SPICE verification of this result is
shown in Figure 4(b) where an initial transient
in the drain voltages ig dampened out by the odd
mode resistor (the transient is caused by an
initial current pulse used to initiate possible
oscillations). As it turns out, any value of
R4 < 400 ohms (including a short circuit) will
work as well.

N=4

The amplifier topology to be analyzed for
the case of n=4 is shown in Figures 1(b). The
symmetric z-matrix of each amplifier half is
given by

50Q
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Figure 3, (a) Odd mode eigenvalue sum for the amplifier in Figure
2 (Rodd==). The conditions for oscillation are satisfied at 5
GHz. (b) SPICE analysis of the same ampltifier verifying the odd

mode oscillation at 5 GHz.
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Figure 4. (a) Odd mode eigenvalue sum for the amplifier in Figure

2 With Rodd = 400 ohms, The oscillation conditions are no longer
satisfied giving a stable amplifier. (b) SPICE analysis of the
amplifier with Rodd = 400 ¢hms showing a decaying transient and

odd mode stability. The transient was caused by a current pulse

purposely applied to initiate any possible oscillations.
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(6)
Zy3 25 2 Zp2

Zi4 Zi3 2y Zny .

The eigenvectors (modes) and associated
eigenvalues for this matrix are

11
1| z=zpbzptzgtzy,
1 even mode
| 1
1
-1 Zy=2y Y2y 2Z=2)3
-1 odd mode #1
1
1
bl| 2,=2,=2,+bl(2,;=2,)
-bl odd mode #2
>_1 -
L)
b2} zg=zp—2ztb2(zy-2)
L—bz odd mode #3
-1
where bl=((-f/a)+((B/a)’+4)*)/2

2=((-B/a)-((B/a)?+4)*) /2

2(zyu-zy) and
Z1~213

b
B
@

When Ry, equals o, zx=2,, p=0, bl=l and
b2=-1. 1In this case the stability of the ampli-
fier can be checked by adding the eigenvalues
for each half of the circuit as before. Howev-
er, the case in which n=4 differs from the n=2
case when both odd mode resistors are finite.

In this situation, the even mode eigenvector and
the first odd mode eigenvector will be identical
for both halves of the amplifier circuit, but
the second and third odd modes will no longer
possess this symmetry (e.d., the odd mode #2
eigenvector for the input half of the amplifier
will have the voltage/current form [l bl ~bl =-1]
whereas the output half where no symmetry de-
stroying odd mode resistors are present will
still have the [1 1 -1 -1) form). Oscillation
possibilities cannot be checked by adding the
eigenvalues for these modes because the current
and voltage waveforms are no longer identical
for both halves of the amplifier. Stability can
still be ensured for these modes by looking at
the eigenvalues for the input half (where the
active devices are located and where, hence, the
negative registances are generated) and varying
the odd mode resistor values until any negative
resistances are removed.

Verification of Equations Using SPICE (N=4)

Shown in Figure 5 is the sample amplifier
network used to check the n=4 odd mode stability
equations. Again, with the Ry resistors set to
®, the eigenvalue sums for the odd modes were
computed. Two of the odd modes, the 1 -1 -1 1
and the 1 -1 1 -1 mode, meet the oscillation
conditions at 3.% GHz (Figure 6). The other odd
mode, the 1 1 -1 -1 mode, meets the oscillation
conditions at 2.05 GHz. Figure 7 plots the
1-1-11 mode oscillation. One mode at a time was
obgerved by suppressing the other two modes with
appropriate resistor combinations. The.

1 -1 =1 1 mode, for example, was brought out by
shorting the drains of the two outer and the two
inner devices together. All three modes can be
suppressed by using low values for Ry, and Ry,.




Figure 5.

Amplifier network used to verify the odd mode equations
for the n=4 case (corporate combiner).
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Figure 6. The 1-1-11 mode and 1-1 1-1 mode eigenvalue sums for
the amplifier in Figure 5 (Rodd = w). Oscillation conditions are
satisfied at 3.5 GHz. Oscillation conditions for the
11-1-1 mode were satisfied at 2.05 GHz.

ADDITIONAL CONSIDERATIONS AND PROPERTIES OF THE
MODES

Several peoints will be discussed here con-
cerning the analysis technique and the proper-
ties of the modes in general. This will give
some additional insight into power amplifier
stability.

First, it is interesting and important to
note that the values of the odd mode eigenvalues
(and, hence, the stability conditions) do not
depend on the values of the terminating source
and load impedances whereas the values of the
even mode eigenvalues are terminating impedance
dependent. Therefore, odd mode oscillations,
unlike even mode oscillations, are a go or no-go
proposition depending only on the devices and
the combining networks and not on the values of
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Figure 7. SPICE analysis of the amplifier in Figure 5 showing the

individual odd mode oscillations of the 1-1-1 1 mode (11-1-1 and
1-1 1-1 mode stabilized).

the terminating impedances. The technique pre-~
sented here can be used to check for "uncondi-
tional” odd mode stability without regard for
the infinite combinations of source and load
impedances. Unconditional even mode stability
should be checked using the usual K/Bl factor
analysis.
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second, it should be noted that the reason odd
mode oscillations occur is because the amplifier
is potentially unstable (i.e., K<1) between the
various combining points. In particular, the
amplifier will oscillate if it is unstable to
short circuits placed at the combining points.
The sum of the odd mode eigenvector components
(which represent voltages or currents) always
add up to zero. The odd mode will therefore
create a virtual ground at all combining points.
If the amplifier is not stable with a short
circuit at these points, the odd mode will "gen-

erate" the short and initiate oscillations (see
ref. {4)). The amplifier in Figure 2, for exam-~
ple, has a K-factor < 1 between the two combin-

ing points and is unstable to a short circuit
placed at either point at 5 GHz. This gave rise
to the push-pull oscillations shown in Figures
3(a) and 3(b). As discussed, the overall ampli-
fier K-factor is greater than 1 and uncondition-
al even mode stability is assured.

Third, the technique presented here could be
applied to amplifier partitioning at the input
side of the active devices. The eigenvalue sums
computed- using this partitioning would still
show a net negative resistance with zero net
reactance at those frequencies where ogcilla-
tions occur. That is, the stability conditions
of equation (4) still apply. Multi-stage amps
may be handled by performing multiple parti-
tions.

Finally, it should be mentioned that, in
general, a short circuit placed between the
input or output terminals of the combined devic-
es( i.e., Ryu=0 ohms) will usually stabilize the
amplifier against odd mode oscillations. Howev-
er, in instances where the devices are widely
gseparated, the "short circuit” will really be a
length of transmission line. The inductance of
this line may cause problems by introducing an
additional “"combining point".

SUMMARY

A technique for predicting power amplifier
stability has been presented. Cases for two and
four combined devices have been analyzed. It was
shown that the stability of the amplifier for
all modes (even and odd) can be checked using
small signal analysis software. Methods for
stabilizing the amplifier were also discussed.
The technique should prove useful to designers
of power MMICs.
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